
The Genetic Programming Engine that Does: Data Specify the Model, Not Fit Data to a Model Bruce Ratner, Ph.D. Typically, the data analyst approaches a problem directly with an "inflexible" designed procedure specifically for that purpose. For example, the statistical problem of prediction of a continuous target variable (e.g., sale or profit) is solved by the "old" classical standard ordinary leastsquares (OLS) regression model. This is in stark contrast to the newer machine learning approach that is a ”flexible" nonparametric, assumptionfree procedure that lets the data define the form of the model itself. The working assumption that today’s (big) data fit the OLS model – which was formulated within the smalldata setting of the day over 200 years ago – is not tenable. A flexible, anysize data model that is selfdefining clearly offers a potential for building a reliable, highly predictive model, which was unimaginable two centuries ago. The purpose of this article is to present the GenIQ Model©, a flexible, anysize data method (with unique scalability) that lets the data, exclusive of anything else, define the model. Specifically, the GenIQ Model automatically and simultaneously performs the trinity of analysis and modeling techniques: selecting important original variables, finding patterns within the data by constructing new important variables from the original variables, and formulating a mathematical equation (model) based on the best set of original and constructed variables. GenIQ is based on the genetic programming “engine.” It offers a clear advantage over current statistical methods, whose performance is dependent upon theoretical assumptions, predefined model formulations, and datatype restrictions. Moreover, GenIQ offers both a timeadvantage and an intelligenceadvantage over regressionbased methods, as the latter require human intervention to perform the trinity of techniques. 1 800 DM STAT1, or email at br@dmstat1.com. 
